

Earth Science Enterprise Technology Planning Workshop

Laser Technology

James Spinhirne (GSFC), Co-Chair Upendra Singh (LaRC) Co-Chair Robert Menzies, Facilitator

January 23-24, 2001

ESE Tech -

Earth Science Enterprise Technology Planning Workshop Laser Technology

Agenda

Tuesday, JAN 23, 2001

Laser Altimetry for Earth surface Vegetation

Global Carbon Cycle: sources and sinks

Tropospheric Water vapor and Ozone Measurement

Space-based Measurements of Tropospheric winds

Laser Design and Requirements for Space

Advanced Solid State Laser Technologies

Advanced Solid-State Lasers for Water Vapor,
 Ozone Wind, and Carbon Dioxide Measurements

Solid State Laser Technologies and Challenges

Jirong Yu - NASA/LaRC

Jim Abshire - NASA/GSFC

Dahv Kliner - Sandia Natl. Lab

Guerman Pasmanik - Passat Ltd.

John Degnan - NASA/GSFC

Laser/Lidar Technology Roadmap and Validation

David Harding - NASA/GSFC

Donald J. Wuebbles - U. Illinois

Syed Ismail - NASA/LaRC

Dave Emmitt - Simpson

Weather Associates

Robert Afzal - NASA/GSFC

T.Y. Fan - MIT

Norm Barnes - NASA/LaRC

Mark Kushina - CEO

Frank Peri – ESTO

Earth Science Enterprise Technology Planning Workshop Laser Technology

Agenda

Wednesday, JAN 24, 2001

- Identify convergence of Science needs and candidate Technology approaches
 - new capabilities enabled
 - reductions in implementation and life-cycle costs
- Define specific capability/technology needs for each measurement class
- Describe and illustrate the current state of the art for the technology
- Itemize the major technology components and current technology readiness level
- Identify ongoing investments
- Identify technology development gaps
- Delineate core technology development and risk reduction plan
- Emphasize laser transmitter subsystem development to EM-level for risk reduction purposes
- Identify schedule and cost data for brassboard and engineering model development of laser subsystems for science-driven missions
 - Show key laser technology classes needed for science mission types
 - · Identify laser transmitter parameters required
 - Associate schedule and cost estimates for brassboard/EM development/testing
- Summary Plenary Session
 - 10-minute presentations by Chairs of each Breakout Session

Workshop Participants

•	G.D. Emmitt	SWA/UVA
•	Syed Ismail	LaRC
•	Brad Greeley	Orbital
•	Dahv Kliner	Sandia Nat'l Labs
•	Bruce Gentry	GSFC
•	John Degnan	GSFC
•	Guermam Pasmanik	Passat Ltd.
•	Joanne Hopkins	SRI Int'l
•	Ben Barker	LaRC
•	John Burris	GSFC
•	Floyd Hovis	Fibertek
•	Tony Gril (?)	ESTO
•	Charles F. Bruce	MIT Lincoln Lab
•	T.Y. Fan	MIT Lincoln Lab
•	Renny Fields	Aerospace Corp
•	Robert Afzel	GSFC/
•	Brenda S. Smith	NMOC/Stennis SC
•	Alex Dudelzak	Canadian Space Agency
•	Stan Schneidet	NPOESS/NASA
•	Brian Killough	NASA LaRc
•	Jeff Mirick	NIMA/ATTR
•	Bob Schutz	U of TX
•	Lou DeMaio	GSFC

•	Brad Haughey	Orbital
•	Upendra N. Singh	LaRc
•	Robert T. Menzies	JPL
•	James Spinhirne	GSFC
•	Mark Kishina	Cutting Edge
•	Douglas Comer	CSRM
•	Bill Burt TRW	
•	Don Wuebbles	U of IL
•	David Olson	ΙΠ
•	William Edwards	LaRC
•	Jirong Yu	LaRC
•	Jim Abshire	GSFC
•	Tom McGee	GSFC
•	Prabharar Misra	Nat'l Academy of Science
	Dilliana	0050
•	Bill Heaps	GSFC
•	John Brock	TRW
•	Marc A. Mogavero	Northrop
•	Norman Barnes	LaRC
•	Michael J. Kavaya	LaRC
•	Timothy D. Cole	APL
•	Ron Ticker	NASA HQ

-4-

Laser Technology

Component Technologies

Quasi-CW Laser Diode Arrays

- High power (~200 W) conduction-cooled
- High brightness, high temperature LDA's
- High electrical-to-optical efficiency
- 5-years lifetime

Robust Optical Components and Coatings

- High damage threshold
- Thermal and Radiation Tolerance

Heat Pipe Technologies for Thermal Management

Efficient Long-life Driver Electronics

Measurement Approach

- Scanning Lidar Altimetry
- Differential Absorption Lidar
- Doppler Lidar

Science Needs

- Ice sheet and terrain monitoring
- Biomass Measurement
- Tropospheric Chemistry
- Tropospheric Winds
- Global Carbon Dioxide
- Cloud/Aerosol Radiative Forcing

Development Plans for Altimetry Laser Transmitter

Laser Type

- Nd:YAG high PRF (>1000 Hz),
 - •Single mode,
 - Narrow frequency,
 - •5-20 Watts Output
- Micro-chip or fiber laser alternative
 - •PRF>10 kHz
- •3-5 years lifetime
- •Wavelength: not critical, ideally near-IR

Justification

- Enables scanning altimetry lidar
 - Ice Sheet Change
 - Vegetation Recovery
 - Terrain Mapping
 - Cloud/Aerosol Height Profiling

Top-Level Development and Schedule

 Component development 2002-2003 Brassboard 2003-2004 Engineering Model 2004-2006

Development Plans for Tropospheric Chemistry Laser Transmitters

Laser Type

- UV Ozone DIAL
 - 305/320 nm wavelength pair
 - 0.5-1J at 5-20 Hz doubled pulse
 - 50 pm linewidth
 - WPE 1%, 3 years lifetime
- IR Ozone DIAL
 - 9.5 micron CO2 laser
 - 250 mJ @ 100 Hz
 - Frequency agile
 - WPE 15%, 3 years lifetime
- IR Water Vapor DIAL
 - 940 or 1100 nm tunable wavelength pair
 - 0.5-1J at 10 Hz doubled pulse
 - 0.25 pm linewidth,
 - Spectral purity > 99%
 - WPE 2%, 3 years lifetime

Justification

- •Enables high vertical resolution profiling of
 - Tropospheric Ozone
 - Tropospheric Water Vapor

Top-Level Development Schedule

- Component development 2002-2003
- Brassboard 2003-2004
- Engineering Model 2004-2006

Development Plans for Tropospheric Carbon Dioxide Laser Transmitters

Laser Type

- Integrated Path Differential Absorption (IPDA)
 - 1.6 µm wavelength pair, tunable
 - •"Reference" transmitter at 761 nm (1 mJ)
 - 10 mJ at 4 kHz, 1-10 microsec pulsewidth
 - 3 MHz linewidth
 - WPE 8% (goal), 3 years lifetime
- Integrated Path Differential Absorption (IPDA)
 - 2.05 µm wavelength pair, tunable
 - 3-5 W CW; 3 MHz linewidth
 - WPE 3%, 3 years lifetime
- DIAL
 - 2.05 μm, tunable wavelength pair
 - 1-2 J at 5-20 Hz, double-pulse
 - conductive-cooling
 - 3 MHz linewidth
 - WPE 2%, 3 years lifetime

Justification

- •Enables ultra high precision profiling of tropospheric carbon dioxide:
 - IPDA with tunability achieves 2-3 km vertical resolution in lower troposphere
 - DIAL with range-gating achieves 1 km vertical resolution in lower troposphere and inherent cloud/aerosol profiling

Top-Level Development Schedule

IPDA Approaches:

- Component development 2002
- Brassboard 2003
- Engineering Model 2003-2004

DIAL:

- Component development 2002-2003
- Brassboard 2003-2004
- Engineering Model 2004-2006

Development Plans for Tropospheric Winds Laser Transmitters

Laser Type

- Coherent Detection Lidar
 - 2.05 µm transmitter, injection-seeded
 - Frequency-agile LO (CW, 20 mW)
 - 0.5 J at 10-20 Hz, with conductive cooling
 - 2 MHz linewidth
 - 150-300 nsec pulsewidth
 - WPE 2%, 3 years lifetime
- Direct Detection Lidar
 - 355 nm transmitter (Nd laser, frequency tripled)
 - 300-500 mJ @ 100 Hz
 - 250 MHz (0.1 pm) linewidth
 - > 5 nsec pulsewidth
 - WPE 2%, 3 years lifetime

Justification

•Enables high vertical resolution profiling of tropospheric wind fields, with potential for cross-track horizontal resolution of 100-200 km in separate tracks or swath on either side of sub-orbital track

Top-Level Development Schedule

- Component development 2002
- Brassboard 2002-2003
- Engineering Model 2003-2004

Development Plans for Cloud and Aerosol Laser Transmitter

Laser Type

- Nd:YAG
 - Single-mode
 - Narrow frequency
- <5 pm linewidth
- > 100 Hz PRF,
- 5-50 Watts Output
- Conductive cooling
- 7% WPE
- 3-5 years lifetime

Justification

- Enables cross-track scanning backscatter lidar
 - Mapping cloud profiles
 - Mapping aerosol profiles
- •Produces distributions with high vertical and horizontal resolution for clouds and aerosols of radiation forcing significance

Top-Level Development and Schedule

- Component development 2002-2003
- Brassboard 2003-2004
- Engineering Model 2004-2006

Workshop Summary Comments

- Most pressing need is support for brassboard and engineering model development of lasers for science-driven mission types
 - Risk reduction and reliability enhancement needed for future space lidars;
 - Leverage commercial technology development to extent possible;
 - Proposals for these developments require science requirement justification and accompanying lidar system performance modeling;
 - Improvements in realism of performance modeling require increased NASA investments in RTOP tasks addressing atmospheric measurements and characterization, and airborne instrument measurements.
- Establish/maintain NASA core competency in critical areas
 - Requires ongoing efforts to maintain critical personnel skills and modern laboratory facilities/equipment, coupled with vigorous recruitment of new talent in laser physics and engineering as well as e.g., contamination control, thermal design, radiation tolerances
 - Pump diode technology is a key requirement for which an inter-governmental action plan should be developed
- Fund specific technology needs which enable improved laser capabilities
 - Refer to listings from previous workshops

- ESE Tech - 11

Further Comments on Laser Technology Development

- High-power, high-energy, space-based lasers are "one-of-a-kind"
 - Large non-recurring engineering costs and large R & D costs
 - NASA must leverage commercial technology to largest extend, but must develop in house capabilities to drive technology in directions unique to the civilian government sector
- Focused research towards enhancing laser efficiency and environmental robustness
- Commercial sector is increasingly uninterested in developing technology for U.S. government problems
- Targeted funding for space-based ""one-of-a-kind" high-energy lasers
- Directed core competency funding to NASA Centers engaged in laser research
- Integrated NASA strategy for developing component level and sub-system level technologies for future missions
- Foster technical alliance between NASA Centers, USAF, NOAA, DOE, NSF for the space-based laser technologies
- Develop, demonstrate and validate Engineering Model before mission award
- Parallel funding of core basic research, modeling, and laser materials development
- Yearly investment of \$5 M towards space-based laser diode development, high damage threshold optics, conduction-cooled technologies, and radiation hardened component development
- Periodic review and assessment of laser technology plans and funding needs

-12-